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Abstract– The problem of determining autoregressive (AR) parameters from
observations corrupted by stationary white Gaussian noise without a pri-
ori knowledge of the noise variance is addressed. We propose a new ap-
proach in which the noise variance and AR parameters are jointly and it-
eratively estimated from low-order Yule-Walker equations. This approach
avoids using unreliable high-order Yule-Walker equations (HOYWEs) or
over-determined Yule-Walker equations (ODYWEs). For short observa-
tions, noise-compensated data extrapolation (NCDE) is employed. Simula-
tion results demonstrate the effectiveness of the proposed approach.
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1. Introduction

AR parameter estimation is a well-known problem [1, 2].
It finds application in many fields including speech process-
ing [3], communication systems [4], geophysical exploration
[5], and radar imaging [6, 7]. In these cases, an observed
white-noise-corrupted data sequence is modeled as an AR pro-
cess. Commonly used AR parameter estimation techniques that
include the autocorrelation method, the least squares method
and singular value decomposition can be found in the literature
[8, 9, 10, 11, 12, 13, 14]. We briefly give a overview of some of
these methods.

One effective autocorrelation-based method was presented in
[9]. It relates the autocorrelation function (ACF) poles to those
of the observed data sequence using a recursive procedure. This
method is, however, only effective when the poles are very close
to the unit circle. A method which requires explicit noise vari-
ance estimation by first pre-filtering the observed data sequence
and then using the improved least squares (ILS) method for pa-
rameter estimation was presented in [10], but it performs best at
low noise levels. A subspace-based approach [14] that employs
the quadratic eigenvalue problem to estimate the noisy AR pa-
rameters gives better results than the YWE-based methods. How-
ever, this method requires long data sequences. In short, these
traditional methods of AR parameter estimation require a combi-
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nation of high model order, long data sequences and high signal-
to-noise ratios (SNRs).

It is well-known that the most reliable AR parameter estimates
can be obtained from LOYWEs [8]. However, noisy LOYWEs
are known to be nonlinear, hence the need to employ HOYWEs
or ODYWEs for AR parameter estimation [12, 13] . However,
HOYWEs or ODYWEs are unreliable since longer correlation
lags are needed [14]. We aim to overcome this noise-related
shortcoming, and at the same time use LOYWEs for AR parame-
ter estimation. This is achieved through a recently proposed iter-
ative noise variance estimation (INVE) method [15] from which
both the noise variance and the AR parameters are obtained from
the noisy LOYWEs. The INVE method is motivated by the desire
to use only the LOYWEs through iterative reduction of the Eu-
clidean distance between the noisy AR parameters and noise-free
AR parameters.

We also consider the case in which the available data sequence
can be variable. For simplicity, we assume that the length of the
data sequence can either be short or long, depending on the appli-
cation. When a short data sequence is available for processing,
data extrapolation can be useful to further enhance the param-
eter estimates [16, 17]. We refer this method to as the noise-
compensated data extrapolation (NCDE) approach. In this paper,
data extrapolation is defined as the process of extending an ob-
served data sequence by linear prediction [17]. We also assumed
that the order of the AR process is either known or can be com-
puted. The main advantage of the proposed method is the ability
to obtain both noise variance and AR parameters simultaneously
and its adaptability to both short and long data sequences.

This paper is organized as follows. In Section 2 the noisy AR
model is given. The bias in AR parameters introduced by additive
noise is highlighted. This section also contains the main ideas in-
volved in noise variance estimation and noise-compensated data
extrapolation. A flowchart is given to illustrate the proposed
method. In Section 3 simulation results are presented. The con-
cluding remarks end the paper.

2. The Noisy AR Parameter Problem and the Proposed So-
lution

This section first presents the noisy AR model. A flowchart is
then given to illustrate the steps involved in the proposed solu-
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tion.

2.1. The noisy AR model
A stationary AR process x(n) of order p is defined by∑P

i=0 a(i)x(n − i) = e(n), where e(n) is an uncorrelated driving
white noise sequence of variance σ2

e and a(i)s are the noise-free
AR parameters (a(0) = 1). The autocorrelation function (ACF)
at lag k for x(n) is defined by rxx(k) = E[x(n)x(n + k)] where E
is the expectation operator. The rxx(k) is given in the above case
by rxx(k) = −∑p

i=1 a(i)rxx(k − i) + δ(k)σ2
e , k ≥ 0, where δ(k) is

the Kronecker delta function. In the presence of noise, the ob-
served data sequence becomes y(n) = x(n)+w(n) , where w(n) is
assumed to the zero-mean additive white Gaussian noise of vari-
ance σ2

w . The ACF for y(n) is similarly defined as that for x(n)
and denoted by ryy(k).

The commonly used YWE’s [8] are

Rxxa = −rx (1)
Ryyâ = −ry (2)

where Rxx and Ryy are p × p autocorrelation matrices (ACM’s)
of the data sequences x(n) and y(n) respectively. The col-
umn vectors on the right hand sides of (1) and (2) are rT

x =

[rxx(1) · · · rxx(p)] and rT
y = [ryy(1) · · · ryy(p)]. The T denotes

the transposition operation. The p × 1 vectors a and â are
the noise-free and noisy solutions to the YWE’s respectively.
The AR parameter estimates from (2) are biased since ryy(k) =
rxx(k) + δ(k)σ2

w. Using (1) and (2), the following relationship
between ACM’s is validated for noise compensation,

Rxx = Ryy − σ2
wI (3)

where I is a p × p identity matrix.

2.2. The proposed solution
Figure 1 gives a flowchart of the proposed method. In the

flowchart, the noise variance estimation step utilizes equations
(1)–(3) to get the functional [15]

f (α) = ||â|| − ||ã(α)|| (4)

where α is a parameter that gives an estimate of σ2
w and ã(α) cor-

responds to the solution of noise-compensated low-order Yule-
Walker equations. The value of α that gives the minimum of
f (α) results in the noise variance estimate. The functional f (α)
is assumed to have a minimum since we consider values of α
between 0 and the autocorrelation of the observations at lag 0,
i.e. ryy(0). We also constrain the solution such that the autocor-
relation function is preserved. This property of the functional
f (α) was described analytically in [15] and forms the basis of
the INVE method. In the proposed method, we use an exhaustive
search method to find the minimum value of f (α). The functional
f can also be considered as a form of generalized cross-validation
where the solution is constrained by the autocorrelation function
of the observed process [18]. The INVE is given below.

The INVE Method
1) Obtain an estimate of the biased noisy autocorrelation se-

quence {r̂yy(k)} as

r̂yy(k) =
1
N

N−1−|k|∑
n=0

y(n)y(n + |k|) (5)

start

Obtain the data 
sequence, y(n)

Iteratively estimate the noise 
variance                   using Eq.(5) 
to Eq.(9)

Estimate the noise-compensated 
AR parameters as    

1
2ˆ ασ =w
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Fig. 1. A flowchart of the proposed method.

where N is the length of the observed noisy data sequence,
and solve Eq.(2) by the Levinson-Durbin algorithm to obtain
an â.

2) Set M as a large real number and initialize the noise variance
parameter and the step-size parameter as

α =
1
M

(6)

s =
α

M
(7)

respectively.
3) Substitute Eq. (3) into Eq. (1) with the setting of σ2

w = α
and solve Eq. (1) to obtain an estimate of a denoted by ã(α).

4) Calculate Eq. (4).
5) If α ≥ r̂yy(0), terminate and obtain the value of α for which

f (α) is minimum. Otherwise, go to Step 6.
6) Calculate s according to

s =
{

r̂yy(0)/M, if α ≥ 1
α/M, otherwise (8)

and increase α by the value of s as
7) Go to Step 3.

If f (α) is minimized when α = α1, then the noise variance es-
timate is σ̂2

w = α1. The noise-compensated AR parameters are
ã(α1). Thus, the noise variance and the AR parameters are read-
ily available.

For the data extrapolation part, we can use ã(α1) to extrapolate
the data sequence y(n) as described in [17] so that we have

ŷ(n) = −
p∑

k=1

α̃k(α1)y(n − k) (9)

where ŷ(n) denotes the extrapolated points, and n ≥ N. The
resulting extrapolated data sequence denoted by y′(n) becomes
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Table 1. Noise variance estimation RMSE performance for the SS method and
the proposed method.

Variance SS Method Proposed Method
α2

w α̂2
w RMSE α̂2

w RMSE
0.3162 0.3559 0.0397 0.3211 0.0049
0.2512 0.2674 0.0163 0.2675 0.0163
0.1995 0.2407 0.0412 0.2163 0.0168
0.1585 0.1734 0.0149 0.1551 0.0034
0.1259 0.1453 0.0194 0.1248 0.0011
0.1000 0.1265 0.0265 0.0718 0.0282
0.0794 0.0926 0.0132 0.0688 0.0107
0.0631 0.0728 0.0097 0.0642 0.0011
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Fig. 2. The pole-zero plots and the all-pole filter frequency response plots for (a)
SET1 and (b) SET2.

{y(0), y(1), ..., y(N − 1), ŷ(N), , ..., ŷ(Q − 1)}, where Q is the total
data sequence length and Q > N. Applying (4) to y′(n) results in
the desired parameter estimates.
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Fig. 3. Comparison of the deviation of the estimated noise variance from the true
noise variance for the SS method and the proposed method using SET1. The
solid line is the true noise variance, the dashed line is the proposed method and
the dash-dotted line is the SS method.

Table 2. Comparison of NC only with the SS method at SNRS of 10db, 15db;
averaging 100 independent runs and using set1 poles.

10 (dB) 15 (dB)
SS method Dev. SS method Dev.

−0.3848 + 0.6449i 0.3543 0.1632 + 0.7578i 0.1328
−0.1524 − 0.5504i 0.3940 −0.1632 − 0.7578i 0.1328
0.4580 + 0.4375i 0.2417 0.4849 + 0.6168i 0.0394
0.4991 + 0.4375i 0.1958 0.4849 − 0.6168i 0.0394
0.6788 + 0.1909i 0.1467 0.6829 + 0.2550i 0.0487
0.6887 − 0.2411i 0.0970 0.6829 − 0.2550i 0.0487

10 (dB) 15 (dB)
NC Dev. NC Estimate

Estimate Dev.
−0.1318 ± 0.2668i 0.0975 −0.1760 ± 0.5213i 0.1188
0.1914 ± 0.2632i 0.0289 0.3781 ± 0.4956i 0.0182
0.2879 ± 0.1217i 0.0443 0.5846 ± 0.2008i 0.0262

Table 3. Comparison of ncde with the ss method, for a short data sequence, and
settings as in table 3.

10 (dB) 15 (dB)
SS method Dev. SS method Dev.

−0.4321 + 0.7724i 0.2481 −0.2666 + 0.8296i 0.1012
−0.3024 − 0.7560i 0.2233 −0.2581 − 0.8296i 0.0982
0.5148 + 0.6845i 0.0554 0.5184 + 0.7104i 0.0222
0.5199 − 0.6963i 0.0440 0.5184 − 0.7104i 0.0222
0.7949 + 0.2816i 0.0410 0.7995 + 0.2861i 0.0262
0.7962 − 0.2862i 0.0366 0.7995 − 0.2861i 0.0262

10 (dB) 15 (dB)
NC Dev. NC Estimate

Estimate Dev.
0.1514 ± 0.3828i 0.1152 −0.2127 ± 0.6181i 0.1008
0.2884 ± 0.3727i 0.0184 0.4169 ± 0.5630i 0.0185
0.4374 ± 0.1482i 0.0170 0.6374 ± 0.2264i 0.0238

3. Simulation Examples

In this section, simulation results are given. We show the re-
sults for noise variance estimation and then for AR parameter
estimation.
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Fig. 4. The pole-zero plots and the all-pole filter frequency response plots for (a)
the SS method and (b) the proposed method with noise compensation (NC) only
at model order of 8 using SET1.

3.1. Simulation environment

Two sets of poles were used as follows: SET1 = {−0.2627 ±
0.8084i, 0.4702 ± 0.6472i, 0.6657 ± 0.2163i} and SET2 =
{−0.2936 ± 0.9035i, 0.5290 ± 0.7281i, 0.8084 ± 0.2627i}. Fig.
2 shows the pole locations and the respective frequency response
plots of the associated all-pole filters. SET2 poles are located
closer the unit circle. From the all-pole filters, 5000-point white-
noise excited data sequences were generated from which 500 data
points were taken to represent the noise free data sequence. For
the short data sequence case, the the length of the data sequence
was reduced to 220. These sequences were corrupted by white
Gaussian noise to give SNRs ranging from 5dB to 15dB. For
NCDE an extension factor of 1.5 was used. To eliminate the
effects of noise-generated poles, the threshold values of 0.70 for
SET1 and 0.75 for SET2 were set. Poles with a magnitude less
than the threshold values were considered to belong to the noise
subspace.
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Fig. 5. The pole-zero plots and the all-pole filter frequency response plots for (a)
the SS method and (b) the proposed method with NC only at model order of 8
using SET2.

3.2. Noise variance estimation
To assess the performance of the proposed method for noise

variance estimation SET1 poles were used.
Table 1 gives the root mean square error (RMSE) for the noise

variance estimation by both methods while Fig. 3 illustrates the
deviation of the estimated noise variance from the true noise vari-
ance. The RMSE at each noise variance σ2

w was obtained as

RMS Eσ2
w
=

√√√ 1
100

100∑
i=1

(
σ2

w − σ̂2
wi

)2 (10)

where σ̂2
wi is the i-th independent estimate of σ2

w. For the sim-
ulated SNR’s, the proposed method results in lower RMSE than
the subspace (SS) method.

3.3. AR parameter estimation
Fig. 4 shows the pole-zero plots and the all-pole filter fre-

quency response plots for the subspace method and for noise
compensation without data extrapolation at AR order 8 using
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Fig. 6. The pole-zero plots and the all-pole filter frequency response plots for
(a) the SS method and (b) the proposed NCDE method at model order of 8 using
SET1.

SET1. The two methods both give reasonably accurate pole loca-
tions with the proposed method tending to drive the poles away
from the unit circle while the subspace approach drives the poles
toward the unit circle. Fig. 5 shows the effect of pushing the
poles close to the unit circle (SET2) for the same settings as in
Fig. 4. The subspace approach tends to produce a peaky fre-
quency response characteristic and some of the poles even fall
out of the unit circle which could raise stability problems. Fig. 6
shows the results when a short data sequence is used for both ap-
proaches with SET1. In this case NCDE performs better by more
accurately locating the pole locations. Fig. 7 illustrates SET2 is
used with the same settings as in Fig. 5. Again NCDE performs
better. In Tables 3 and 4 the Dev. refers to the standard devia-
tion of the estimated poles. The results show that the proposed
method gives smaller deviation when compared to the subspace
approach at the same SNR and data length. Therefore it is pos-
sible to obtain a better estimate of the final AR parameters using
the proposed method. As previously stated, the deviations are
however in different directions.
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Fig. 7. The pole-zero plots and the all-pole filter frequency response plots for
(a) the SS method and (b) the proposed NCDE method at model order of 8 using
SET2.

4. Concluding Remarks

In this paper we have shown that noise variance and AR pa-
rameters can be accurately extracted from observations corrupted
by additive white Gaussian noise using LOYWEs. For short ob-
servations, NCDE has been shown to perform better than the SS
approach. The noise variance estimates resulted in lower RMSE
while the estimated poles showed smaller standard deviation.
Thus, the superiority of the proposed method was confirmed.
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